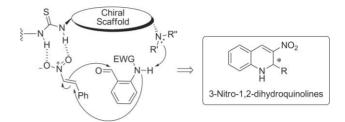
Bifunctional thiourea-promoted cascade aza-Michael-Henry-dehydration reactions: asymmetric preparation of 3-nitro-1,2-dihydroquinolines†

Xiaoqian Liu and Yixin Lu*

Received 7th June 2010, Accepted 25th June 2010 First published as an Advance Article on the web 21st July 2010 DOI: 10.1039/c0ob00223b


A cascade aza-Michael-Henry-dehydration reaction catalyzed by quinidine-derived tertiary amine-thiourea catalyst was developed via installation of suitable electron withdrawing groups at the amino function of aniline. This strategy led to a one-step preparation of chiral 3-nitro-1,2-dihydroquinolines in high yields and with up to 90% enantiomeric excesses.

Hydroquinolines, which possess a broad spectrum of biological activities, are of great importance in pharmaceutical industry and medicinal chemistry.1 In particular, functionalized 1,2-dihydroquinolines are useful structural motifs and synthetic intermediates in natural product synthesis. 1a,1d Methods for the catalytic asymmetric synthesis of chiral 1,2-dihydroquinolines are very limited.² Shibasaki and co-workers developed an asymmetric Reissert-type reaction promoted by a Lewis acid-Lewis base bifunctional catalyst to access chiral 2-cyano-1,2dihydroquinolines.3 Wang et al. disclosed an asymmetric synthesis of 3-formyl-1,2-dihydroquinolines employing a domino conjugate addition-aldol-dehydration reaction promoted by prolinol silyl ether via an iminium-enamine activation.⁴ A similar approach for the dihydroquinoline synthesis was independently reported by Córdova and co-workers.⁵ Given the importance of functionalized 1,2-dihydroquinoline compounds, and lack of efficient method for the preparation of chiral 3-nitro-1,2-dihydroquinolines,⁶ we set out to develop an organocatalytic approach to tackle this synthetic

Bifunctional organic molecules containing a tertiary amino group and a thiourea moiety have been established as remarkably useful organic catalysts.7 We envisage that a cascade process8 mediated by tertiary amine-thiourea catalyst may lead to a onepot generation of chiral 3-nitro-1,2-dihydroquinoline (Scheme 1). Installation of an electron-withdrawing group on the amino moiety of 2-aminobenzaldehyde is anticipated to increase the aniline N-H acidity, and the abstraction of which by the tertiary amine leads to an aza-Michael reaction. The thiourea group in the chiral catalyst is anticipated to have hydrogen bonding interactions with the nitro group. The subsequent Henry reaction with the aldehyde, followed by dehydration is expected to generate 3-nitro-1,2-dihydroquinoline.

To test the above hypothesis, a sulfonyl was used to activate the amino group, and the reaction between N-(2-

Department of Chemistry and Medicinal Chemistry Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore. E-mail: chmlyx@nus.edu.sg; Fax: +65-6779-1691; Tel: +65-

Scheme 1 Synthesis of 3-nitro-1,2-dihydroquinoline via a cascade aza-Michael-Henry-dehydration reaction.

formylphenyl)benzenesulfonamide and nitrooelfin was chosen for initial exploration. As cinchona alkaloids are well-established organic catalysts,9 a number of cinchona alkaloid-based organocatalysts were examined in our study (Table 1). To our delight, quininederived 4 and quinidine 5 effectively promoted the projected cascade reactions, yielding the desired 3-nitro-1,2-quinolines in excellent yields, albeit with poor enantioselectivities (entries 1 and 2). Quinidine-derived sulfonamide¹⁰ 6 was completely ineffective (entry 3). While quinidine-derived thiourea catalysts 7, 8 and 9 offered low enantioselectivities (entries 4-6), thiourea 10 was found to be a good catalyst, affording the desired quinoline in moderate enantioselectivity (entry 7). Enantioselectivity was substantially improved when toluene was used as a solvent (entry 8). Electron-withdrawing sulfone group in the sulfonamide substrate is essential for the observed reactivity, as no reaction was observed when 2-aminobenzaldehyde or its N-Cbz-protected derivative was used.11 We reasoned that the sulfonamide moiety in the substrate might play an important role in asymmetric induction, thus various sulfonamides were prepared and their influences on the reactions were investigated. Methanesulfonyl group afforded the product in high yield, but the enantioselectivity was significantly decreased, suggesting that the steric hindrance of the sulfonamide may be important in the asymmetric induction (entry 9). Sulfonamides containing various electron-withdrawing groups on the phenyl rings or naphthylene gave results comparable to those obtained with tosylsulfonamide (entries 10 to 13). By employing sterically hindered 2,4,6-trimethylbenzenesulfonamide substrate, very good enantioselectivity was attainable (entry 14). Using more hindered 2,4,6-triisopropylbenzenesulfonamide led to further improvement in the enantioselectivity of the reaction. Under the optimized reaction conditions, the desired 3-nitro-1,2dihydroquinoline was obtained in 81% yield and with 90% ee (entry 16).

This cascade aza-Michael-Henry-dehydration reaction is applicable to different nitroolefins (Table 2). Various meta- or parasubstituted aryl nitroolefins were suitable substrates, and the electronic nature of the aromatic rings can be varied. In addition, aliphatic nitroolefin could be used. Moreover, employment of

[†] Electronic supplementary information (ESI) available: Experimental details, analytic data, HPLC chromatogram and NMR spectra of the products. See DOI: 10.1039/c0ob00223b

Table 1 Screening of organic catalysts for cascade aza-Michael-Henrydehydration reaction^a

Entry Ca	nt. R	Solvent	t/h	Yield ^b (%)	ee ^c (%)
1 4	pCH ₃ –Ph	CH ₂ Cl ₂	12	95	13
2 5	pCH_3 –Ph	CH ₂ Cl ₂	48	95	12
3 6	pCH_3-Ph	CH ₂ Cl ₂	73		_
4 7	pCH_3-Ph	CH ₂ Cl ₂	24	95	23
5 8	pCH_3 –Ph	CH ₂ Cl ₂	48	70	15
6 9	pCH_3-Ph	CH ₂ Cl ₂	50	80	9
7 10	pCH_3-Ph	CH_2Cl_2	50	95	48
8 10	pCH_3-Ph	Toluene	72	95	70
9 10	CH ₃	Toluene	48	95	40
10 10	pCF_3-Ph	Toluene	72	43	63
11 10	pNO_2 –Ph	Toluene	72	79	58
12 10		Toluene	18	> 95	55
13 10	1-naphthyl	Toluene	72	> 95	72
14 10	2,4,6-Me-Ph	Toluene	60	80	86
15 10	2,4,6- <i>i</i> Pr–Ph	Toluene	60	57	90
16 ^d 10	2,4,6- <i>i</i> Pr–Ph	Toluene	72	81	90
17 10	2,4,6- <i>i</i> Pr–Ph	CH ₂ Cl ₂	72	60	65
18 10	2,4,6- <i>i</i> Pr–Ph	Xylene	72	70	86
19 10	2,4,6- <i>i</i> Pr–Ph		48	95	0

"The reactions were performed with 1 (0.025 mmol), 2a (0.075 mmol) and the catalyst (0.0025 mmol) in anhydrous solvent (0.2 mL) at room temperature, unless otherwise specified; ^b Isolated yield. ^c The ee value was determined by chiral HPLC analysis. d 20 mol% catalyst was used.

different ortho-formyl anilines led to the ready formation of different quinolines. However, ortho-substituted aryl nitroolefins were poor substrates,12 likely due to the steric repulsion resulted from the nearby bulky sulfonamide group.

The sulfonyl group could be easily removed by reductive cleavage. When 3j was treated with magnesium in methanol under refluxing condition, 2-aryl-substituted 3-nitro-1,2-dihydroquinoline 4j was obtained in good yield. It should be noted that the enantioselectivity was maintained and the bromine atom on the benzene ring was not affected (Scheme 2).

Scheme 2 Reductive removal of the sulfonyl group

Table 2 Asymmetric synthesis of various 3-nitro-1,2-dihydroquinolines via 10-promoted cascade aza-Michael-Henry-dehydration reaction^a

1h-s Pr		+ R ² NO ₂	10 (20 mol %) Toluene, RT	NO ₂ NO ₃ NO ₃ NO ₄ NO ₅
---------	--	----------------------------------	---------------------------	---

1h-s			3h-s		
Entry	Product	t/h	Yield ^b (%)	ee ^c (%)	
1	NO ₂ N''' O=S=O iPr iPr 3h	72	81	90	
2	NO ₂ O=S=O IPT 3i	36	77	82	
3	NO ₂ N NO ₂ O=S=O iPr Br	36	91	85	
4	NO ₂ 0=\$=0 /Pr CN Pr 3k	36	92	87	
5	NO ₂ N ''' O=\$=0 Pr 31	48	83	81	
6	O=S=O Pr OMe	48	75	84	
7	NO ₂ O=\$=0 Pr 3n	72	90	87	
8	NO2 O=S=O iPr 30	72	86	89	
9	NO ₂ NO ₂ NO ₃ NO ₄ NO ₅ NO ₇	72	83	81	
10	NO ₂ NO ₂ NO ₃ O=S=O iPr iPr 3q	72	86	70	

Table 2 (Contd.)

Entry	Product	t/h	Yield ^b (%)	ee ^c (%)
11 ^d	NO2 NO2 NOSSO IPT IPT 3r	72	75	82
12	CI NO ₂ O-\$=0 Pr 36	72	78	88

^a The reactions were performed with 1 (0.025 mmol), 2 (0.075 mmol) and 10 (0.0025 mmol) in anhydrous toluene (0.5 mL) at room temperature; Isolated yield. ^c The ee value was determined by chiral HPLC analysis. ^d 50 mol% catalyst was used.

In conclusion, we have developed a new catalytic cascade aza-Michael-Henry-dehydration process for the efficient preparation of chiral 3-nitro-1,2-quinolines. Installing an electronwithdrawing sulfone group on anilines allows for their activation by well-established tertiary amine-thiourea catalysts, and this strategy may find wide applications in the preparation of nitrogencontaining heterocycles. Mechanistic understanding of this cascade reaction, development of other organocatalytic cascade processes and their applications to the asymmetric synthesis of flavonoids and their structural analogues are currently under investigation in our laboratory.

Acknowledgements

We wish to thank the National University of Singapore and the Ministry of Education (MOE) of Singapore (R-143-000-362-112) for generous financial support.

Notes and references

1 (a) For a review, see: A. R. Katritzky, S. Rachwal and B. Rachwal, Tetrahedron, 1996, 52, 15031; (b) For selected examples, see: K. M. Witherup, R. W. Ransom, A. C. Graham, A. M. Bernard, M. J. Salvatore, W. C. Lumma, P. S. Anderson, S. M. Pitzenberger and S. L. Varga, J. Am. Chem. Soc., 1995, 117, 6682; (c) R. M. Kariba, P. J.

- Houghton and A. J. Yenesew, J. Nat. Prod., 2002, 65, 566; (d) S. W. Elmore, M. J. Coghlan, D. D. Anderson, J. K. Pratt, B. E. Green, A. X. Wang, M. A. Stashko, C. W. Lin, C. M. Tyree, J. N. Miner, P. B. Jacobson, D. M. Wilcox and B. C. Lane, J. Med. Chem., 2001, 44, 4481; (e) P. D. Leeson, R. W. Carling, K. W. Moore, A. M. Moseley, J. D. Smith, G. Stevenson, T. Chan, R. Baker and A. C. Foster, J. Med. Chem., 1992, 35, 1954.
- 2 (a) For non-catalytic asymmetric synthesis of chiral 1,2dihydroquinolines, see: L. Cointeaus and A. Alexakia, Tetrahedron: Asymmetry, 2005, 16, 925; (b) P. A. Evans, J. E. Robinson and K. K. Moffett, Org. Lett., 2001, 3, 3269; (c) F. Rezgui, P. Mangeney and A. Alexis, Tetrahedron Lett., 1999, 40, 6241; (d) S. J. Pastine, S.-W. Youn and D. Sames, Tetrahedron, 2003, 59, 8859; (e) G.-L. Lu and H. C. Malinakova, J. Org. Chem., 2004, 69, 4701.
- 3 M. Takamura, K. Funabashi, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2000, 122, 6327
- 4 H. Li, J. Wang, H. Xie, L. Zu, W. Jiang, E. N. Duesler and W. Wang, Org. Lett., 2007, 9, 965.
- 5 H. Sunden, R. Rios, I. Ibrahem, G.-L. Zhao, L. Eriksson and A. Córdova, Adv. Synth. Catal., 2007, 349, 827.
- 6 (a) For synthesis of racemic 3-nitro-1,2-dihydroquinolines, see: M.-C. Yan, Z. Tu, C. Lin, S. Ko, J. Hsu and C.-F. Yao, J. Org. Chem., 2004, 69, 1565; (b) While our work was in progress, Xu et al. reported an elegant asymmetric synthesis of 3-nitro-1,2-dihydroquinolines using a dual-activation protocol, see Y.-F. Wang, W. Zhang, S.-P. Luo, B.-L. Li, A.-B. Xia, A.-G. Zhong and D.-Q. Xu, Chem. Asian J., 2009, 4, 1834.
- 7 (a) For reviews, see: M. S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed., 2006, 45, 1520; (b) S. J. Connon, Chem. Commun., 2008, 2499; (c) X. Yu and W. Wang, Chem.-Asian J., 2008, 3, 516; (d) P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289; (e) T. Akiyama, J. Itoh and K. Fuchibe, Adv. Synth. Catal., 2006, 348, 999; (f) A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713; (g) For selective examples, see: X. Han, J. Kwiatkowski, F. Xue, K.-W. Huang and Y. Lu, Angew. Chem., Int. Ed., 2009, 48, 7604; (h) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; (i) H. Huang and E. N. Jacobsen, J. Am. Chem. Soc., 2006, 128, 7170; (j) M. P. Lalonde, Y. Chen and E. N. Jacobsen, Angew. Chem., Int. Ed., 2006, 45, 6366; (k) J. Wang, H. Li, X. Yu, L. Zu and W. Wang, Org. Lett., 2005, 7, 4293; (1) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding and Y. Wu, *Synlett*, 2005, 603; (m) B. Vakulya, S. Varga, A. Csampai and T. Soos, Org. Lett., 2005, 7, 1967; (n) S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed., 2005, 44, 6367; (o) J. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun., 2005, 4481; (p) Q. Zhu and Y. Lu, Org. Lett., 2009, 11, 1721; (q) X. Han, J. Luo, C. Liu and Y. Lu, Chem. Commun., 2009, 2044.
- 8 (a) For excellent reviews on asymmetric cascade reactions, see: X. Yu and W. Wang, Org. Biomol. Chem., 2008, 6, 2037; (b) D. Enders, C. Grondal and M. R. M. Huttl, Angew. Chem., Int. Ed., 2007, 46, 1570; (c) C. J. Chapman and C. G. Frost, Synthesis, 2007, 1; (d) G. Guillena, D. J. Ramon and M. Yus, Tetrahedron: Asymmetry, 2007, 18, 693; (e) H. Pellissier, Tetrahedron, 2006, 62, 2143.
- 9 (a) For recent reviews and selective examples, see: C. E. Song, Cinchona Alkaloids in Synthesis & Catalysis: Ligands, Immobilization and Organocatalysis, Wiley-VCH, Weinheim, 2009; (b) Y. Chen, P. McDaid and L. Deng, Chem. Rev., 2003, 103, 2965; (c) S.-K. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid and L. Deng, Acc. Chem. Res., 2004, 37, 621; (d) H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc., 2004, 126, 9906; (e) X. Lu, Y. Liu, B. Sun, B. Cindric and L. Deng, J. Am. Chem. Soc., 2008, 130, 8134.
- 10 J. Luo, L.-W. Xu, A. S. R. Hay and Y. Lu, Org. Lett., 2009, 11, 437.
- 11 2-Aminobenzaldehyde or benzyl 2-formylphenylcarbamate was mixed with catalyst 10 in toluene for 72 h, no reaction occurred.
- 12 When (E)-1-chloro-2-(2-nitrovinyl)benzene was subjected to the same reaction conditions, the corresponding quinoline was obtained in 60% yield and with 17% ee.